
Kala Maturi, Technology Services
Yoon Lee, Technology Services

AWS Identity and Access
Management (IAM) made

easy with Terraform

Topics
• AWS Authentication
• AWS Authorization
• About Roles & Policies
• Best practices
• Terraform code for IAM policy and role
• AWS IAM demo

AWS IAM (Identity and Access
Management)

• AWS IAM is a web service that can be used to securely control
access to AWS resources

• IAM can be used to control who can use AWS resources
(authentication)

• IAM lets you manage which AWS resources can be accessed in
what ways (authorization)

AWS IAM (Identity and Access
Management)

X X

Authentication
● What is an IAM role?

○ IAM Role is an IAM identity that you can create in your
account that has specific permissions

● AD (Active Directory) and Shibboleth attributes are used in
granting access to AWS accounts

Naming convention for IAM roles

● Role names in AD (Active Directory)
○ AWS-<Account ID>-<RoleName>
○ Example: AWS-XXXXXXXXXXXX-KalturaAdmin

Naming convention for IAM roles
● Role names in AWS

○ ServiceNameAdmin
○ Example: KalturaAdmin
○ AccountAdmins (devops group)
○ Example:ApplicationServicesAdmins

AuthN & AuthZ

AuthN & AuthZ
• Client application makes a sign-in request to organizations IdP

to log in
• IdP authenticates the user and generates a SAML

authentication response which includes assertions that
identify the user and include attributes about the user

AuthN & AuthZ
• Application then makes an unsigned call to STS (Security

Token Service) with the AssumeRoleWithSAML action to
request temporary security credentials

• Application passes the ARN of the SAML provider, the ARN of
the role to assume, the SAML assertion about the current
user returned by IdP

AuthN & AuthZ
• AWS verifies the SAML assertion is trusted and valid, if so

returns temporary security credentials that have the
permissions for the role named in the request

• Using the temporary security credentials the application
makes signed requests to AWS to access the services

About Roles
• AWS permissions are granted to a user by associating the user

with a role
• A user can be associated with multiple roles
• Each role has one or more policies attached

What is an IAM Policy ?
● A policy is a document which defines the actions that a user

can perform on an Amazon resource
○ Actions example: GetObject/PutObject in S3 or

RestartAppServer in Elastic Beanstalk
● A Terraform policy document contains statement, actions,

resources and a condition

Designing Policies
● How to determine access needs for Service Admins?

○ Meet with Service Admins to gather requirements
■ Example: Few Authman Admin requirements

○ Able to pull and push images to ECR
○ Ability to kill tasks in ECS instance
○ Ability to do the snapshots of the RDS database

Designing Policies
● Design and create custom IAM policies

○ Able to pull and push images to ECR

● Created custom policy called -- ecr-authman-rw
○ Restricted access to repository -- authman

● Attach policies to the roles

Best Practices
• Principle of least privilege
• Use “Access Advisor” in the AWS Console to track permissions
• Enable multi-factor authentication
• Do regular audits of roles and members
• Use STS(Security Token Service) instead of storing access keys

Scenario:Amazon S3 access
• A user needs to access to S3 bucket called ‘itpro-demo’
• User should be able to download, upload and delete files

within that bucket

Terraform IAM policy code
Data source block
data “aws_iam_policy_document” “default” {

statement {
actions = [“S3:ListBucket”,

“S3:GetBucketLocation”,]
resources = [“arn:aws:s3:::itpro-demo”]

}
}

Terraform IAM policy code
statement {

actions = [“S3:GetObject”,
“S3:PutObject”,
“S3:DeleteOject”,]

resources = [“arn:aws:s3:::itpro-demo/*”]
}

Terraform IAM policy code
statement {

actions = [“S3:ListAllMyBuckets”,]
resources = [“arn:aws:s3:::*”]

}

Terraform IAM policy code
Resource block
resource “aws_iam_policy” “default” {

name = “S3BucketAccess”
path = “/”
description = “Policy that allows access to S3
bucket”
policy =
“${data.aws_iam_policy_document.default.json}”

}

Terraform IAM role code
Resource block
resource “aws_iam_role” “default” {

name = “testrole”
description = “Test role for ITPF demo”

assume_role_policy =
“${data.aws_iam_policy_document.saml.json}”

}

Terraform IAM role code
Data source block
data “aws_iam_policy_document” “saml” {

statement {
actions = [“sts:AssumeRolewithSAML”]
principals {

type = “Federated”
identifiers =
[“arn:aws:iam::XXXXXXXXXXXX:saml-

provider/shibboleth.illinois.edu”]
}

Terraform IAM role code

condition {
test = “StringEquals”
variable = “SAML:aud”
values =

[“https://signin.aws.amazon.com/saml”]
}

}
}

Attaching policy to the role
resource “aws_iam_policy_attachment” “test-attach” {

name = “S3BucketAccess”
roles = [“${aws_iam_role.default.name}”]
policy_arn =
“arn:aws:iam::XXXXXXXXXXXX:policy/S3BucketAccess”

}

Role in AD group

Demo

References
● AWS IAM Documentation

https://aws.amazon.com/documentation/iam/
● IAM Best Practices to Live By

https://youtu.be/_wiGpBQGCjU (52:49)
● How to Become an IAM Policy Ninja

https://youtu.be/y7-fAT3z8Lo (55:38)

https://aws.amazon.com/documentation/iam/
https://youtu.be/_wiGpBQGCjU
https://youtu.be/y7-fAT3z8Lo

• IAM Role

http://jayendrapatil.com/tag/iam-role/

• Granting access to the AWS Console

https://tinyurl.com/yyzb3a4q

• Introduction to Terraform

https://www.terraform.io/intro/index.html

References

http://jayendrapatil.com/tag/iam-role/
https://tinyurl.com/yyzb3a4q
https://www.terraform.io/intro/index.html

• GitHub Repo for example Terraform code
https://tinyurl.com/yy53f33b

References

https://tinyurl.com/yy53f33b

Questions ?

Contact
• Kala Maturi – cmaturi@Illinois.edu
• Yoon Lee – yoonlees@Illinois.edu

mailto:cmaturi@Illinois.edu
mailto:yoonlees@Illinois.edu

Thank you!

